This is Scientific American’s 60-Second Science. I’m Karen Hopkin.
这里是科学美国人——60秒科学系列,我是凯伦·霍普金。
They say you can catch more flies with honey than with vinegar.
据说,用蜂蜜能比用醋捉到更多苍蝇。
But what if you had access to a remote-controlled carnivorous plant?
但如果你能获得一株远程遥控的食肉植物呢?
Because researchers have engineered a bio-inspired system, an artificial neuron, if you will, that can trigger the snap of a Venus fly trap.
研究人员设计了一种仿生系统,或者称为一个人工神经元,如果你愿意的话,这可以触发捕蝇草的突然闭合。
Hi, my name is Simone Fabiano. I'm associate professor at Linkoping University in Sweden.
你好,我是西蒙·法比亚诺。我是瑞典林科平大学的副教授。
Fabiano designed the trap-springing device using nerve cells as a kind of bio-based blueprint.
法比亚诺以神经细胞为生物蓝图设计了一个诱捕弹性装置。
The way our biological neurons work is that they integrate information from different inputs over time, perform computation, and communicate the result to other neurons by means of voltage pulses.
生物神经元的工作方式是,随着时间的推移,它们会整合不同的输入信息,执行计算,并通过电压脉冲将结果传达给其他神经元。
Now, standard, silicon-based systems can also deliver electrical pulses.
现在,标准的硅基系统也可以传输电脉冲。
But if you want to couple them with something living to produce bionic prosthetics or engineer any kind of brain/machine interface.
但如果你想把它们与活的生物结合起来,生产仿生假肢或设计任何类型的大脑/机器接口。
Well, they suffer from several limitations.
嗯,他们受到了几个限制。
Such as rigidity, poor biocompatibility, complex circuit structures, and operation mechanisms that are fundamentally different from those of biological systems.
比如硬度太高、生物相容性差、电路结构复杂、运行机制与生物系统也有根本上的不同。
To smooth biological integration, Fabiano built his system from polymers that conduct both electrons, like, everyday electronics, and ions, which is how neurons get things done.
为了顺利地进行生物整合,法比亚诺用高分子建造了系统,这种高分子既能传导电子,也能传导日常电子和离子,而离子是神经元完成任务的方式。
It’s the ions that enable communication between biological and artificial neurons.
正是这种离子使生物神经元和人造神经元之间能够进行交流。
Each part of the artificial neuron, which the researchers describe in the journal Nature, has a direct counterpart in its biological role model.
研究人员在《自然》杂志上描述:人工神经元的每个部分,在其生物角色模型中都有一个直接的对应部分。
We have an input terminal that acts as the biological neuron’s dendrite.
有一个输入端,可以充当生物神经元的树突。
That dendrite collects the incoming electrical signals and sends them to a capacitor which, like a neuronal cell body, integrates the information.
这个树突收集传入的电信号,并将它们发送到电容器,电容器就像神经元细胞体一样,整合信息。
Then, once the voltage reaches a specific threshold, a pulse is fired along organic amplifiers that mimic a nerve cell axon.
一旦电压达到特定的阈值,就会沿着模仿神经细胞轴突的有机放大器发射脉冲。
We use the ionic concentration-dependent switching characteristics of our transistors to modulate the frequency of spiking, which is to a large extent analogous to biological systems.
我们使用晶体管离子浓度依赖转换的特性来调节猛增频率,这在很大程度上类似于生物系统。
So the ions control the current that flows from the faux neuron to its target, in this case, a live Venus flytrap, triggering the rapid-fire closure of its leafy appendages.
离子控制着自人造神经元流向其目标的电流,在这种情况下,一个鲜活的捕蝇草会触发其枝叶急速闭合。
All in all, a dramatic demonstration of the potential of neuromorphic design that should give interested engineers, and interloping fruit flies, something to watch out for.
总而言之,对引人注目的神经形态设计电位的展示,会给感兴趣的工程师和闯入他人领地的果蝇提个醒。
For Scientific American’s 60-Second Science, I’m Karen Hopkin.
谢谢大家收听科学美国人——60秒科学。我是凯伦·霍普金。
文章为可可英语翻译,未经授权请勿转载!